Implementing ERP for Remanufacturing

Dr. Gary A. Landis, CFPIM, CSCP, CIRM

Presentation Outline

• Introduction
• Remanufacturing Background
• Contrast of Remanufacturing with Manufacturing
• Methods for Reconciling Differences (Case Study)
• Major Unique Aspects of Remanufacturing
• Supply Chain Planning
Presentation Outline, cont.

• Inventory
• Bills of Material
• Routings
• Finance
• Accurate Transaction Reporting
• Metrics
• Summary

Introduction

• Remanufacturing:
 – form of recycling that reuses machines that no longer work
 – Disassemble to repair, recycle, or harvest part
Introduction, cont.

Diamond
MPS/MRP
Manufacturing

Disassembly

Remanufacturing Background

- Productivity of manufacturing increased 300% in 50 years
- Current trend material productivity initiatives
- Material substitution – reduced input and weight
- Recycling – awareness and legislation
- REMAN ultimate form of recycling
Remanufacturing Background, cont.

- Conserves raw material and value-added content of original process

 Represents America’s largest untapped opportunity.

Remanufacturing Background, cont.

- **Refurbishing** – repairing an item by inspecting parts and restoring to like-new condition

- **Repurposing** – takes unit apart and removes parts still working to use in other machines
R emanufacturing Background, cont.

• REMAN underpinnings
 – Economic – massive and expensive products
 – Public or governmental regulations – waste reduction, energy conservation, protect ground water, etc.

R emanufacturing Background, cont.

• European examples
 – 15% of a vehicle can be scrapped
 – A certain percent of a new vehicle must use REMAN parts
 – USA requires labels on products recycled or remanufactured
Contrast REMAN with Manufacturing

- Difficulty of forecasting
- Used cores are primary source of supply for parts
- Number of usable parts from cores not known until inspected
- Disassembly by and reassembly – different skills/equipment
- Skilled technicians required

Methods for Reconciling Differences – A Case Study

- Implementation of an ERP system
- Importance of a pilot – none
- Full-time implementation team
- Objectives and benefits
 - Obtain rapid order fulfillment
 - Improve demand planning forecasts
Methods for Reconciling Differences – A Case Study, cont.

- Methods for streamlining operations
- Financial viability
- Right equipment, right parts, right time
- Use an integrated ERP software package

Major Unique Aspects of Remanufacturing

- Disassembly
 - Identify anticipated wear parts
 - Clean and inspect all other parts
 - Determine reclaim by repair or use as is
 - Determine other parts worn unexpected (replacement lead time must be accurate)
Major Unique Aspects of Remanufacturing, cont.

• Basic accuracies
 – Bills of Material
 – Routings
 – Inventory
 – Transaction reporting

• Lifecycle Management (PLM) manage from
 – Conception
 – Design
 – Manufacturing
 – Service
 – Disposal
Supply Chain Planning

• Philosophy of remanufacturing
 — Repair rather than buy
 — Determine interchangeability and substitutability
 — Recognize mortality and recovery rates
 — Time-phasing of supply actions

Demand Planning

• Type of forecast
• Major planning considerations
 — Acquisition objectives
 — Items due
 — Replacement factor
 — Density, etc.
Demand Planning, cont.

• Secondary item planning considerations
 – Historical demand
 – Serviceable returns
 – Change factors – environmental characteristics

Scheduling

• Use of Master Production Schedule (MPS)
• Use project management – work breakdown structure/budget
Pre-Shop Analysis (PSA)

- Unique to remanufacturing
- Mandatory
 - Edit routings for unplanned activities
 - Record QA defects and scrap
 - Identify material procurement actions
 - Identify additional repair parts

Inventory

- REMAN more complex
 - Inventory movements – repair, WIP clarification, etc.
 - Changing inventory status/condition
 - Definitions
 1. Transfer Order (TO) – move material from one storage location to another
 2. Transfer Posting (TP) – Changes in stock type – same, location
Inventory, cont.

• More transactions – important to do – bracket/motor

Bills of Material

• Quantity issues – not one for one – climate issues
• Use both quantitative and qualitative forecasting
 — Past history
 — Review new contract for various use changes
• Change ratio if required
• Ongoing revision process
Routings

• Complex
• Use alternate routings. Why?
 – If replaced
 – If refurbished
 – If just cleaned and tested
• Also standards, wait, move, queue, and set-up times dependent on above

Finance

• Accurate costs important
• REMAN issues
 – Make or buy
 – Recover scrap price
 – Rework costs
 – Very complex for assemblies and subassemblies
Finance, cont.

• Contract budgets
 – Unexpected requirements
 – Unexpected cost
 – Over-runs and under-runs
• Process costs

Accurate Transaction Reporting

• Cornerstone of a successful system
• Examples of transaction reporting
 – Past-due production orders
 – Reporting orders have started
 – Reporting orders completed – confirmations
 – No unplanned issues – means right parts issued
 – Receiving and transferring material
Metrics

• Total inventory value
• Obsolete and slow-moving inventory
• Inventory turns
• Completed cycle counts
• Number of inventory errors
• Work center past-due production orders

Metrics, cont.

• Work center performance to schedule based on start date
• Work center performance to schedule based on finished date
• Confirmations scheduled
• Exception messages
• Unplanned issues report
Metrics, cont.

- Rough-cut capacity planning
- BOM accuracy
- Routing accuracy
- Others that can be added are:
 - Missing parts report
 - Review of aged purchase orders, etc.

Important Metrics

- Measuring the right metrics is the foundation of any successful ERP system implementation. These are considered the cornerstones. The four cornerstones of a successful ERP system are:
 - Accurate inventory
 - Accurate shop floor activities reporting
 - Accurate BOMs
 - Accurate routings
Completed Cycle Counts (ASRS Inventory Accuracy)

<table>
<thead>
<tr>
<th>Quarter Ending</th>
<th>Goal</th>
<th>Actual Month End</th>
</tr>
</thead>
<tbody>
<tr>
<td>*September 2011</td>
<td>60%</td>
<td>42.23%</td>
</tr>
<tr>
<td>December 2011</td>
<td>70%</td>
<td>72.9%</td>
</tr>
<tr>
<td>March 2012</td>
<td>80%</td>
<td>91.3%</td>
</tr>
<tr>
<td>June 2012</td>
<td>95%</td>
<td>90.3%</td>
</tr>
<tr>
<td>September 2012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Baseline

Completed Cycle Counts (ASRS Inventory Accuracy)

Measured as a percentage

- Sept-11: 42
- Oct-11: 61
- Nov-11: 75.7
- Dec-11: 72.9
- Jan-12: 83.1
- Feb-12: 60
- Mar-12: 60.5
- Apr-12: 70
- May-12: 91.3
- Jun-12: 86.7

Goal
Actual
Confirmations Scheduled

- This measurement is based on total scheduled order confirmations to be executed versus total orders confirmed. Only released production orders are used in calculations.

<table>
<thead>
<tr>
<th>Quarter Ending</th>
<th>Goal</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2011</td>
<td>53.5%</td>
<td>44.96%</td>
</tr>
<tr>
<td>December 2011</td>
<td>62.4%</td>
<td>55.1%</td>
</tr>
<tr>
<td>March 2012</td>
<td>71.4%</td>
<td>66.4%</td>
</tr>
<tr>
<td>June 2012</td>
<td>80.3%</td>
<td>48.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classifications</th>
<th>% Confirmed May</th>
<th>% Confirmed June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>50.1%</td>
<td>48.6%</td>
</tr>
<tr>
<td>Item A</td>
<td>54.4%</td>
<td>66.4%</td>
</tr>
<tr>
<td>Item B</td>
<td>62.2%</td>
<td>75.7%</td>
</tr>
<tr>
<td>Item C</td>
<td>46.2%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Item D</td>
<td>78.5%</td>
<td>25.3%</td>
</tr>
<tr>
<td>No Assigned Work Centers</td>
<td>30.2%</td>
<td>26.45%</td>
</tr>
</tbody>
</table>

Measured as a percentage

![Graph showing the measured percentage from Sep-11 to Jun-12](image)
Summary

• Definitions:
 – Manufacturing – fabricating or assembling of an end item from many components and materials
 – Remanufacturing – begins with unserviceable asset and repairs that asset into a serviceable condition

Summary, cont.

• Areas of differences discussed:
 – Importance of pilot
 – Disassembly
 – Basic accuracies – BOM, routings, inventory, transactions
 – Lifecycle management
Summary, cont.

• Supply chain planning
 – Demand planning
 – Scheduling
 – Pre-shop analysis
• Inventory
• Bills of Material
• Routings

Summary, cont.

• Financial issues
• Metrics

Must document agreed-upon processes or best practices for all areas.
Summary, cont.

• Case study – last four years
• ERP in remanufacturing environment
• Differences “devil in the details”
• Many challenges (opportunities)
• Discussed differences – manufacturing vs. remanufacturing

Summary, cont.

• Provided some examples
• Just the beginning – follow-up recommended

Many opportunities exist for improvement, and this type of implementation is subject to a continuous improvement approach.